2 research outputs found

    Lunar Propellant Factory Mission Design To Sustain Future Human Exploration

    Get PDF
    The International Space Exploration Coordination Group (ISECG) Global Exploration Roadmap (GER) is the standard document reflecting the current focus of the leading space agencies that envision space exploration missions beyond Low Earth Orbit (LEO), returning to the Moon and going to Mars in the upcoming years. The roadmap showcases the Moon as a stepping-stone for further human space exploration, by setting up a sustainable space infrastructure on its surface an orbit. Inspired from this vision, we present the result of a phase A study about a lunar propellant factory near the Shackleton south-pole crater relying on In-Situ Resources Utilization (ISRU) to produce and sell Liquid Oxygen (LOX) on the moon surface and in orbit. The overall timeline of the mission is in line with the ISECG exploration roadmap Moon phase, based on realistic technologies of advanced-enough Technology Readiness Levels (TRL). It is a second iteration on the Lunar Propellant Outpost (LUPO) mission architecture, presented during IAC 2018. We preserved and reviewed the original building blocks (Habitats, Crew Mobility Elements, ISRU Facilities, and Lunar Spaceport) of the LUPO mission architecture, and further improved the mission design, supported by trade-off analysis on different mission scenarios. An extensive analysis and optimisation have been performed on ISRU processes and surface electrical power management, the core of our infrastructure. The mission architecture also includes crew on the lunar surface, so life support systems and habitat, as well as operations concepts, have been studied in-depth, and a synthesis of all results is presented. The main aim of this iteration was to improve and refine the baseline infrastructural and technological design architecture of LUPO and reflect on missions going beyond the Moon by providing refuelling services, with sustainability and economic viability in mind

    Where are we now with European forest multi-taxon biodiversity and where can we head to?

    No full text
    International audienceForestry implementation significantly impacts forest biodiversity. Despite the promotion of Sustainable Forest Management (SFM) in Europe, sustainability assessments hardly account for direct biodiversity indicators. We aim to i) gather and map the existing information on forest multitaxon biodiversity associated with stand structure and management in Europe; ii) identify knowledge gaps for forest biodiversity research; and iii) discuss the research potential associated with multitaxon biodiversity data. We established a research network focused on multi-taxon biodiversity, stand structure and management data of European forests; and fitted species records, standing trees, lying deadwood, and sampling unit metadata from 34 local datasets. Suitable information was available for 3,591 sampling units, each surveyed for on average 4.6 taxonomic groups. Standing tree diameters, tree height deadwood and tree-related microhabitats were sampled in respectively 2,889; 2,356; 2,309 and 1,388 sampling units. Sampling unit metadata includes spatial coordinates, and compositional and management descriptors. Available data cover all the 14 European forest compositional categories but are unevenly distributed among them, with European beech forests being over-represented as compared to thermophilous and boreal forests. Overall, the available information has the potential to inform the development of conservation and SFM strategies for European forests by supporting: (i) methodological harmonization and coordinated monitoring; (ii) the definition and testing of SFM indicators and thresholds; (iii) datadriven assessment of the effects of environmental and management drivers on multi-taxon forest biological and functional diversity, (iv) multi-scale forest monitoring integrating in-situ and remotely sensed information
    corecore